
LANGUAGE
PROCESSORS

(CST412)

Syllabus

UNIT-I Introduction to Compilers- Introduction to Compilers, Phases of compiler design,
cross compiler, Bootstrapping,LEX, Tombstone Diagram, Relating Compilation Phases
with Formal Systems

Lexical Analysis- Lexical analysis and tokens, input buffering, tokens, pattern and
lexemes, Design of Lexical analyzer, Regular Expression, transition diagram, recognition
of tokens, Lexical Errors, NFA and DFA for Lexical Analysis, Direct Method for
Conversion of RE to DFA, DFA Minimisation.

UNIT-II Syntax Analysis- Specification of syntax of programming languages using CFG,
Top-down parser, design of LL(1) parser, bottom up parsing technique, Handle and Viable
Prefix, LR parsing, Design of SLR, CLR, LALR parsers, Parser Conflicts, Handling
Ambiguous Grammars, Applications of the LR Parser, YACC.

UNIT-IIISyntax directed translation- Study of syntax directed definitions & syntax
directed translation schemes, Type and Type Checking, A Simple Type Checking System,
Type Conversion and equivalence, implementation of SDTS, intermediate notations-
postfix, syntax tree, TAC, translation of Assignment Statement, expressions, controls
structures, declarations, procedure calls, Array reference.

Syllabus

UNIT-IV Storage allocation & Error Handling- Run time storage
administration stack allocation, Activation of Procedures, Storage
Allocation Strategies, Garbage Collection, symbol table management,
Error detection and recovery- lexical, syntactic and semantic.

UNIT-VCode optimization-Machine-independent Optimisation- Algebraic
Simplification and Strength Reduction, Dead Code Elimination, loop Simplification and Strength Reduction, Dead Code Elimination, loop
optimization, control flow analysis, data flow analysis, Loop invariant
computation, Induction variable removal, Elimination of Common sub
expression, Function Inlining and Cloning, other techniques and Machine-
dependent Optimisation.

UNIT-VI Code generation – Problems in code generation, Target Machine,
Instruction Cost, Simple code generator, Register allocation and
assignment, Register allocation by Graph Colouring, Code generation
from DAG, Code Generation by Dynamic Programming.

Textbooks

1. Aho, Sethi, and Ullman; Compilers Principles
Techniques and Tools; Second Edition, Pearson
education, 2008.

2. Alfred V. Aho and Jeffery D. Ullman; Principles of 2. Alfred V. Aho and Jeffery D. Ullman; Principles of
Compiler Design; Narosa Pub.House, 1977.

3. Vinu V. Das; Compiler Design using Flex and Yacc;
PHI Publication, 2008.

4. Manoj B Chandak, Khushboo P Khurana; Compiler
Design; Universities Press, 2018.

Course Outcomes

CO1. Exhibit role of various phases of compilation, with
understanding of types of grammars and design complexity of
compiler.

CO2. Design various types of parses and perform operations like
string parsing and error handling.string parsing and error handling.

CO3. Demonstrate syntax directed translation schemes, their
implementation for different programming language
constructs.

CO4. Implement different code optimization and code
generation techniques using standard data structures.

Introduction

01000011010011110100110101010000010101
01010101000100010101010010.

Introduction

 Problem:

Very difficult to understand and find errors. A single
digit if mistyped or left out while typing, changes
the meaning of the program and may create errors.the meaning of the program and may create errors.

 Solution: High Level Language

English like, not understood by computers

Again a problem?

Solution: Compiler

Compiler

 The output of compilation is the object code.

 Some compilers provide output in assembly language,

CompilerSource

program

Target

program

 Some compilers provide output in assembly language,
which is then converted to machine language by an
assembler

 C Compiler:

C program (“.c”)  C Compiler object code (".o"
/".obj“)

 Java Compiler produces byte code

Very first compiler

 When the very first compiler was developed, no
other compilers were available- written in assembly
language.

 For a completely new language - the compiler or  For a completely new language - the compiler or
interpreter must be written in another language.

 For example, Y Niklaus wrote the first Pascal compiler
in Fortran.

 The compiler may be rewritten in its own language
and become a self-hosting compiler.

C Compiler history

 1960s: Digital Equipment Corporation (DEC) introduced the
PDP series of minicomputers

 The first version of Unix was written in the low-level assembly
language of PDP-7.

 TMG (TransMoGrifier) language was created for PDP-7 and
used by Ken Thompson to develop a FORTRAN compiler. used by Ken Thompson to develop a FORTRAN compiler.

 But he ended up creating compiler for a new high-level
language called B.

 B language was influenced by an earlier language called
Basic Common Programming Language (BCPL).

 BCPL - a huge amount of assembly code to accomplish a
given task.

 B was designed to perform the same functionality in just a
few lines of code.

C Compiler history

 C language is descendant of B language, written when the
PDP-11 computer arrived at Bell Labs.

 Dennis Ritchie used B to create a new language-NB or
NewB

 NB was later refined to C. NB was later refined to C.

 The first C compiler created by Dennis Ritchie was written
in the short-lived language NB.

 C itself was refined many times.

 The latest versions of GCC (GNU Compiler Collection)
distribution containing C and C++ compilers that were
written in C are moving towards C++.

Java Compiler history

 The first Java compiler created by Sun Microsystems

 Written in C and used some libraries from C++

 Today, the Java compiler is written in Java while the
Java Runtime Environment (JRE) is written in C. Java Runtime Environment (JRE) is written in C.

 The Java compiler was written as a program in Java
and compiled using a Java compiler written in C-
bootstrap compiler.

 written in Java and which could compile Java
programs.

Language Processing System

Phases of Compiler

Lexical Analysis

 first phase of the compilation process

 Source Program  Lexical analyser Stream of tokens

 Tokens- logically cohesive sequence of characters

 Common examples of tokens are:
� Keywords

� Operators

� Identifiers

� Symbols

� Constants

� Strings

Lexical Analysis
C code which prints numbers from 1 to 10,

void main()

{

int count;

for(count = 1; count <= 10; count ++)

printf("%d", count);

printf("\n");

}

34 tokens will be identified as follows:

void main ()

{

int count ;

for (count = 1 ; count <= 10 ; count ++)

printf ("%d" , count) ;

printf ("\n“) ;

}

Lexical Analysis

 The symbol table stores

<token-type,attribute value> pairs for all the tokens
identified.

 Consider the statement: int count = 1;

Token Token type Symbol table entries

int keyword <keyword, int>

count identifier <id, pointer to symbol table entry of count>

= operator <assign_op, >

1 constant <constant, 1>

; symbol <symbol, ;>

Syntax Analysis

 Parser

 Tokens Syntax analyser parse tree

 Validates syntax: checks if tokens appear in the
patterns that are permitted by the specification for the
source languagesource language

example

A=B+C  Lexical analyser  id = id + id  Syntax
Anayser  Parse tree

Semantic Analysis
 Checks the source program for semantic errors

 Performs type checking

 Checks if the token is declared before its use

 Checks if identifiers are used in the appropriate
contextcontext

 Checks subroutine call arguments and labels

 Dynamic semantic checks are performed at run-time

Eg: array index within bounds, arithmetic errors such
as division by zero, pointers not de-referenced unless
pointing to valid objects and that there is no un-
initialised variable.

Intermediate Code Generation

 Transforms the parse tree into an intermediate
language representation

 Three address representation of continued example

T1= B+C T1= B+C

A=T1

Code Optimisation

 apply transformations to the output of the intermediate
code generator to generate faster or smaller object
language programs.

 Simple optimisations can significantly improve the running
time of the target program without slowing down the
compilation timecompilation time

 Some of these optimising techniques are as follows:
� Local optimisation

� Loop optimisation

� Dead code elimination

� Copy propagation

� Common sub-expression elimination

Code Generation

 This phase converts intermediate code into a sequence of machine
instructions.

 Intermediate code in machine code as:
Load B

Add C

Store AStore A

 Code optimisation can be applied after the code generation phase.
This is called machine-dependent code optimisation,

 takes advantage of the special features of the target machine.

 It involves CPU registers and may have absolute memory references
rather than relative references.

 Machine-dependent optimisers take maximum advantage of
memory hierarchy.

Symbol Table and Error Handling

 Each phase uses a symbol table and error handler.

 The symbol table stores information about the occurrence of
various entities such as
� variable names

� function names

Objects� Objects

� classes

� interfaces

 Phases may store information or use the information from the
symbol table.

 The error handler is invoked by any phase if an error has
occurred.

Overview of Compiler Design

Lexical Analysis

(Scanner)

Source Program

Machine independent

Code optimization

F
Syntax Analysis

(Parser)

Semantic Analysis

Intermediate code

generation

Intermediate Code

Code generation

Machine dependent

Code optimization

F

R

O

N

T

E

N

D

B

A

C

K

E

N

D

Pass and Phase

Phase:

logically cohesive operation

takes input from the previous stage processes the
data  yields output (used as input for the next phase)data  yields output (used as input for the next phase)

Pass:

traversal of a compiler through the entire program

Reads the source program or output of the previous
pass Applies transformations  writes the output in
an intermediate file

Pass and Phase

Pass Phase

It is a physical scan over a source

program i.e, how many times the source

code will be scanned.

It accepts the input in one representation

of source program and produces output

in another representation.

Scans over the source program, process

it and stores it in an intermediate file.

It pass the processed information from

one phase to next phase.it and stores it in an intermediate file. one phase to next phase.

Intermediate file is needed between

each pass.

Intermediate file is not needed between

phases

Splitting into more number of passes

reduces memory.

Splitting into more number of phases

reduces complexity not memory

Single pass compiler is faster than

multi-pass compiler

Reduction in number of phases gives

complexity.

Application of Techniques Used in
Compiler Design

CD techniques can be applied to other domains of
computer science:

 Techniques used in the lexical analyser can be used in
text editors, information retrieval systems, query
languages, etc.

 Parser techniques can be used in query processing
systems like SQL and in pattern recognition systems.

 Most of the techniques can be applied to natural
language processing.

Relating Compilation Phases with
Formal Systems

Lexical Analysis:

 Regular expression (RE)

 A finite automata (FA)

Syntax analysis:Syntax analysis:

 A context-free grammar (CFG) is used to specify the
rules of the language.

 PDA (pushdown automata) to implement the CFG to
recognise valid language constructs.

Relating Compilation Phases with
Formal Systems

Intermediate code generation:

 Parse tree can be converted into a linear representation, for example, postfix
notation.

 Intermediate code can be represented using quadruple, triple or indirect
triple notation

code optimisation:

Data flow analysis uses fixed-point algorithms.  Data flow analysis uses fixed-point algorithms.

 Dead code elimination uses graph algorithms.

Machine code generation:

 Computer architecture is used

 Greedy algorithms and graph-based algorithms used for register allocation.

 Dynamic programming techniques used for instruction selection.

 Complex data structures are utilised by symbol tables, parse trees and data-
dependence graphs.

Compiler Construction Tools

 Scanner generators

 Parser generators

 Syntax-directed translation engines

 Automatic code generators Automatic code generators

 Data flow engines

